This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SPECTRAL PROPERTIES OF SOME OXOVANADIUM(IV) &-

DIKETONATES Kantilal S. Patel^a; Gabriel A. Kolawole^a ^a Department of Chemistry, University of Ibadan, Ibadan, Nigeria

To cite this Article Patel, Kantilal S. and Kolawole, Gabriel A.(1986) 'SPECTRAL PROPERTIES OF SOME OXOVANADIUM(IV) β-DIKETONATES', Journal of Coordination Chemistry, 15: 2, 137 – 145 **To link to this Article: DOI:** 10.1080/00958978608079778 **URL:** http://dx.doi.org/10.1080/00958978608079778

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem. 1986, Vol. 15, p. 137-145 0095-8972/86/1502-0137 \$18.50/0

SPECTRAL PROPERTIES OF SOME OXOVANADIUM(IV) &-DIKETONATES

KANTILAL S. PATEL and GABRIEL A. KOLAWOLE[†]

Department of Chemistry, University of Ibadan, Ibadan, Nigeria (Received November 27, 1985)

The vibrational and electronic spectra of fifteen oxovanadium(IV) β -diketonates have been investigated. Although all the complexes are five-coordinate, substitution at α - and β -positions in these β -diketonates give rise to some measurable effects. The spectral behaviour of VO(pybd)₂ and VO(tfpybd)₂ suggests that the pyridyl group might be interacting very weakly with the metal centre but without exerting any noticeable changes in stereochemistry.

Keywords: Diketones, vanadium (IV), spectra, stereochemistry, properties

INTRODUCTION

Oxovanadium(IV) has enjoyed a considerable attention from researchers^{1,2} because of its unique configuration (d¹), high nuclear spin (7/2) and isotopic purity. Among the oxovandium(IV) complexes, oxovanadium(IV) β -diketonates have received reasonable attention.³⁻⁶ Recently we reported⁷ the magnetic properties of a series of oxovanadium(IV) β -diketonates and found that the substitution of heterocyclic rings in a β -diketone exerts a small but noticeable effect on magnetic moments down to liquid nitrogen temperature. Besides this fact it was observed that fluoromethyl substitution in a particular β -diketonate gives an effective magnetic moment independent of temperature. The e.s.r. study⁸ of some of these complexes showed that they exhibited the normal eight-line spectrum characteristic of oxovanadium(IV) except in the case of VO(tfpybd)₂ which displayed some line-broadening in chloroform in which it was found to be tetrameric.

In this study we report the spectral properties of the β -diketonates^{7,8}, I, with the view to highlighting the effect of substitution and solvent dependence on their stereochemistry.

EXPERIMENTAL

The preparation of the complexes has been reported elsewhere.⁷ The i.r. spectra were recorded on a Perkin-Elmer 457 spectrometer in the range 250-4000 cm⁻¹ using pressed KBr discs. The calibration of the instrument was checked against a polystyrene film and is believed to be accurate to within ± 2 cm⁻¹. The diffuse reflectance and solution spectra of the complexes in the range 10.0-32.0 kK were recorded on a Unicam SP 500 spectrophotometer except in some cases where the reflectance spectra were recorded on a Unicam SP 700 spectrophotometer with an SP 735 diffuse reflectance attachment in the range 5.0-50.0 kK.

	R ² HC R ¹ C		
		\square_2	
Compound	' א		Abbreviation
1	\bigcirc	Ch3	VO(bzdc) ₂
2	\bigcirc	CF3	VO(tfbzac) ₂
3	()	\bigcirc	V0(dbm) ₂
4	сн ₃ сн ₂	СН _З	VO(hxd) ₂
5	сн _з сн ₂	CF3	VO(tfhxd) ₂
6	L.	с н ₃	vO(fbd) ₂
7	C.L	CF3	vO(tffbd) ₂
8	OO	$\bigcirc \bigcirc \bigcirc$	VO(dnpd) ₂
9	OO	CF3	vO(tfnpd) ₂
10	₹, L	снз	vo(tbd) ₂
11	\sqrt{s}	CF3	vo(tftbd) ₂
12	$\widehat{\mathbb{Q}}$	снз	۷0(руЪd) ₂
13	$\widehat{\mathbb{Q}}$	CF3	VO(tfpybd) ₂
14	сн₃0{○}- сн	-O-0	vo(mdbm) ₂
15	CF3	с(сн ₃) ₃	VO(tfmhxd) ₂

RESULTS AND DISCUSSION

Infrared spectra

The major assignments are given in Table I. It is now generally agreed⁹⁻¹¹ that the band at 1560-1620 cm⁻¹ is attributable to the $v_{as}(C===O)$ frequencies whereas the band at 1510-1580 cm⁻¹ is due to $\nu_{as}(C===C)$ frequencies. The bands between 1300 and 1400 cm⁻¹ and between 1200 and 1250 cm⁻¹ are assigned to $\nu_s(C===O)$ and $v_s(C===C)$ respectively.^{10,11} The former band couples slightly to the C-H bonding mode. It is also observed that fluorination of the methyl group raises C == 0 and C == C stretching modes in those cases where the ligands are fluorinated except in (5) where no change is observed in $v_{as}(C===C)$. These changes are due to the strong negative inductive effect of the trifluoromethyl group which strengthens the C == 0and C == C bonds. Moreover, phenyl substitution in $M(acac)_3$ shifts C == Cstretches to higher frequencies and $\hat{C} = = 0$ to lower frequencies due to the mesomeric interactions of the phenyl group with the pseudo-aromatic metal chelate ring.¹² Our results indicate that the asymmetric stretches for C == 0 and C == C are practically unaffected by the introduction of the second phenyl ring (3) when compared with (1), whereas $v_s(C===O)$ for (1) is greater than in (3) while the second phenyl is replaced by naphthyl (8), $v_{as}(C===0)$ and $v_s(C===0)$ and $v_s(C===C)$ increase. However, $v_{as}(C===O)$ and $v_{s}(C===C)$ are lower in furyl and thienyl derivatives whereas in the pyridyl cases $v_{as}(C===0)$ is higher. On the other hand, $v_s(C===0)$ and $v_s(C===C)$ are higher in furyl, thienyl and pyridyl complexes than in the phenyl. Thus it seems that aromatic (phenyl and heterocyclic) substitution shifts the symmetric stretches for both C == C and C == O to higher energy whereas the asymmetric stretches tend to respond to changes in the aromatic substituents. The factors responsible for such an observation could be electronegativity, mesomeric and inductive effects depending on the position of the heteroatom in the aromatic ring.

The $\nu(V=O)$ frequencies are normal¹³ for five-coordinate square-pyramidal complexes. Generally the fluorinated β -diketonates have lower frequencies than the nonfluorinated complexes except, unexpectedly, in the pyridyl complexes where $\nu(V=O)$ for the non-fluorinated species is higher. The general lowering of $\nu(V=O)$ is expected because of the fluorine atoms. The highest frequency recorded for (14) might be due to the electron-releasing methoxy group attached (at the *para* position) to the substituent. The unusual behaviour of (12) and (13) suggests that the hetero-N atom may be participating in bonding with the metal atom.¹⁴ The $\nu(V=O)$ frequency suggests that the V----N interaction in the complexes is weak. The interaction is much weaker in (13) because the presence of CF₃ seems to reduce the electron-density on the pyridyl-N atom in preference to perturbing the V=O bond; consequently the V----N interaction is weaker and hence $\nu(V=O)$ is greater. The proposed structure for the pyridyl complexes is given in Figure 1.

Electronic spectra

The electronic spectral data are presented in Table II. Except for (1) and (2), which gave three bands in the region 10-22 kK in the reflectance spectra, all the complexes gave four d-d transitions, in both the solid state and in chloroform solution, suggesting no fundamental structural changes in either medium. However, in pyridine solutions only (3), (4) and (5) gave four bands; (12), (13) and (15) gave three bands while the other complexes gave two bands.

It therefore seems that all the complexes have $C_{2\nu}$ symmetry in the solid and in chloroform solution. Under $C_{2\nu}$ symmetry four transitions are expected, with $e_{\pi}^*(d_{xy}, d_{xz})^{15}$ splitting.¹⁶ However, it is well documented that in most oxovanadium(IV) complexes these four bands are not normally observed at room temperature except in

		Relevant vi	brational frequence	cies (cm ⁻¹) ^a of the	oxovanadium(IV) complex	es			
Compound	$v_{as}(C===0)$	$v_{as}(C==C)$	ν _s (C===0)	ν _s (C===C)	и(V=O)		V-O sen	sitive mod	es	
VO(bzac) ₂	1585s	1518vs, br	1370s 1308m	1208m	666	591 m	568vs		454vs	381s
VO(tfbzac) ₂	1600s	1574m	[323m) [794m]	1255m	949m, 896s	600m	554m			380m
VO(dbm),	1568s	1522vs	1366s 1370s	1230s	998vs, 947m	586vs	551m		468m	375s
VO(hxd),	1573vs, br	1531vs, br	1368w sh	1258m	1000vs, 963m	616m		480vs	423w	367 m
VO(tſħxd)	1612vs	1530s	1356m	1280s	921vs	598s	531 m		446s	375m 310w
۷O(hd)	1582sh	1515vs	1389m 1366s	1230m	997vs, 962m	612vs 590m			448s	377m 357w
VO(tffbd),	1590w) 1575vs)	1540m	1387s 1312vs	1266s	950s, 917s	595m	525w		440w	382m
VO(dnpd),	1605m	1528vs	1389s	1240m	987m, 970wm	619m	552m	474m	435w	372m
VO(tbd)2	l 588sh	1530vs, br	1382m) 1348m)	1236m	1000s, 964m	619w 588m	550m		442m	375m
VO(tftbd),	1600s)	1545s 1580vs)	1355s 1321vs	1260m 1236m	901s	602m	550w		420w	380m
VO(pybd) ₂	1588s	1510s	1380vs 1325wm	1296s	960vs, 858s	612m	554s		437vs	350s
VO(tfpybd) ₂	1602vs, br 1566m	1535s	1335w 1308vs	1258s	980vs	596s	555s 523m		470w	340s
VO(mdbm) ₁	1600s) 1584w) ^{vs}	1530vs, br	1365s 1324m	1262s 1230s	1027vs, 989s	562m	537m 515m		484m	375s
VO(tfmhxd) ₂	1619w) 1596vs) ^{vs}	1546m 1520m	1307vs	1254s 1228wm	940vs	605s	537m	499m	457w	378m
br = broad.	ymmetric and syr	nmetric stretching	frequencies resp	ectively. vs = ver	y strong, s = stre	ong, m =	medium, v	vm = wea	k medium	w = weak,

SUN C TABLE I . 1 640

140

FIGURE 1 Proposed structure for VO(pybd)₂ and VO(tfpybd)₂.

some low-symmetry complexes.¹⁷ In a few six-coordinate complexes^{18,19} two bands have been reported. Apart from the splitting of the e_{π}^{*} level the possibility of the inversion of the e_{π}^{*} and $b_{1}^{*}(d_{x^{2}-y^{2}})$ levels has been reported.^{13,19-21} For the purposes of interpreting our data, therefore, we have adopted the energy levels proposed by Selbin *et al.*,¹³ incorporating the modification of Kuska and Yang¹⁵ on the splitting of the e_{π}^{*} level. In those cases where two bands are observed in pyridine solution, the second band occurred below 17 kK which we consider somewhat low to be assigned to band III, and therefore it is not clear whether those complexes can be regarded as octahedral in pyridine solution. It could be that band III is obscured by the adjoining charge-transfer

			Electronic spectra of	the oxovanadi	ium(IV) compl	exes. ^a			
Compound	Medium	Band I b₂ → b¦	Band II b₂ → e ″	Band III b₁ → a¦	Band IV C.T.	BandV C.T.	Band VI $\pi_3 \rightarrow \pi_*^*$	Band VII π → π*	Band VIII $\pi_3 \to \pi_5^*$
VO(hzac) ₂	Solid CHCI,	14.29 11.77	16.12 14.93(0.92) 16.53(0.94)	21.59 22.73(1.18)	24.59	27.82	34.18 30.77(3.64)	38.06	45.21
	ру	12.99(0.55)	17.86(0.60)				30.30(3.24)		
VO(1fbzac) ₂	Solid CHCI,	10.94 11.49sh(0.66)	17.65sh 15.04(1.05)	21.65sh 21.28(2.16)		29.76	30.30(3.70)	36.76br	
	ЬУ	13.51(0.56)	16.13sh(0.68)			28.99(3.34)			
VO(dhm) ₂	Solid	11.76sh	14.76	20.82	24.41sh	27.18	32.44	37.06	44.82
	снсі,	11.63sh(0.44)	10.00 14.49(0.98)	20.83sh(2.08)		28.57(3.80)			
	ру	11.91sh(0.30)	16.13(1.02) 13.16(0.09) 15.87sh(0.40)	20.00(0.40)		27.78(3.20)			
VO(hxd)2	Solid	11.77	14.29	19.42	25.76br	29.76hr		36.68br	45.09
	снсі,	11.91sh(0.48)	16.07 14.71(0.82)	19.61(0.88)	24.10(1.20)	28.17sh(1.70)			
	py	11.11sh(1.0)	10.92(0.88) 12.74(1.42) 16.95sh(1.30)	22.22(1.80)					
VO(tfhxd) ₂	Solid	11.36	13.25 16.39	22.22					
	снсі,	11.70sh(0.50)	13.51(0.88)	22.73sh(1.76)					
	ЬУ	11.11sh(0.10)	13.16(0.58) 13.16(0.58) 16.81sh(0.58)	21.75(2.00)			31.25(3.00)		
VO(fbd)2	Solid	11.05	12.82	20.00	25.32				
	снсі,	10.73sh(0.40)	10.20 14.29(0.78) 14.470 833	20.62sh(0.95)		29.41(3.70)			
	py	13.07(0.53)	10.07(0.00) 16.67sh(0.56)			28.57(3.40)			
i								Table II c	ontinued overleaf

K.S. PATEL and G.A. KOLAWOLE

142

TABLE II

Downloaded At: 19:27 23 January 2011

			L	able II continue	p				
VO(tffbd)2	Solid	11.36sh	12.27	20.41	25.00				
	CHCI,	11.36(0.40)	14.29(0.92)	22.73sh(1.64)		28.57(3.85)			
	by	13.33(0.58)	(0.80) 16.67sh(0.80)			27.78(3.52)			
VO(dnpd)2	Solid	11.44	14.56	18.71sh	23.82sh		30.53br	37.12br	45.29
	CHCI3	11.76sh(1.80)	12.79(1.95)	21.29sh(3.00)	26.67(3.82)				
	py	13.33(0.43)	(00.7)c7.c1 16.36sh(1.03)	`	26.67(3.60)				
VO(tfnpd) ₂	Solid	11.63	13.44	20.00	25.41		31.71	36.24br	45.18
	CHCI	11.77(1.60)	10.0/ 13.99(1.73)		24.57sh(3.20)	28.99(3.92)		100/./6	
	ру	13.26(0.76)	10.0/(1.81) 16.39sh(1.04)			28.57(3.68)			
VO(tbd) ₂	Solid	10.64sh	14.09	23.26	25.24sh	27.59	32.35	36.47	44.94
	CHCI,	10.81sh(0.19)	10.00 14.09(0.88)		24.10sh(1.58)	27.59(3.60)			
	by	13.99(0.74)	(06.0) 17.39sh(0.88)			28.17(3.52)			
VO(tftbd)2	Solid	10.89	14.09	19.88sh	24.53	28.78		37.24	
	CHCI,	10.20sh(1.20)	17.79(1.31)	23.26sh(1.49)		28.57(4.40)			
	ру	13.33(0.60)	16.07(1.50) 16.39sh(0.93)			27.03(3.36)			
VO(pybd)2	Solid	11.36	13.70	20.84	25.00	27.29sh	31.00sh	36.76br	45.00
	снсі,	11.36sh(0.04)	17.27	21.74sh(0.70)		27.03(3.19)		1066.16	
	py	12.99(0.50)	17.24(0.71) 16.67sh(0.53)	20.00sh(1.35)			31.25(3.23)		
VO(tfpybd) ₂	Solid	11.24	13.37	20.83	25.64	27.88	31.47br	35.24br	44.82
	CHCI,	11.49sh(0.69)	10.13 13.99(0.49) 16.2024.0720	20.41(1.47)		28.57(2.98)			
	py		13.51(0.50)	19.23sh(0.53)		29.41(3.23)			
								Table II c	ontinued overleaf

tin Table II co VO²⁺-DIKETONATES

143

			-	Fable II continu	ed	
VO(mdbm) ₂	Solid	10.64	14.29 16.53	20.83	24.39	26.67
	снсі,	10.99sh(1.12)	14.49(1.44) 16.67(1.44)	22.22(1.80)		27.03(3.56)
	py	12.82(0.52)	16.67sh(0.88)			26.32(3.70)
VO(tfdmhxd) ₂	Solid	11.17	13.33 16.67	23.26		28.19
	снсі,	11.17sh(1.42)	13.70(1.60)	23.81(2.08)		31.25sh(3.72)
	ру	13.51(0.74)	16.67(0.78)	22.22(1.26)		31.25sh(3.12)
^a Band maxin	ıa in kK (log ε	s); s in M ⁻¹ cm ⁻¹ .				

cm_ kK (log ε); ε in M⁻¹ Ξ 9

band or the energy of the d_{z^2} level had been lowered to form a degenerate transition with the $d_{x^2-y^2}$ level, thus lowering the energy of band III.

Fluoro-substitution raises the energy of band III (in the solid) except in (10) and (11) where the substitution lowers the energy. It is practically unchanged in (12) and (13). However, in solution, and in bands I and II in the solid state no discernible trend can be perceived. It is also observed that on changing from one phenyl (1) to diphenyl (3) and then to dinaphthyl (8) substitution patterns, the positions of bands II and III shift to lower frequencies accompanied by a corresponding reduction in ν (V=O), thus suggesting that these phenyl substituents make the complexes more planar.²²

In the reflectance spectra five bands are observed around 45, 36-38, 34-36, 27-31 and 24-26 kK. The spin-allowed transitions $\pi_3 - \pi_5^*$ and $\pi_3 - \pi_4^*$ lie in the 50 and 37-30 kK regions respectively.^{20,21} Phenyl substitution lowers the frequencies of these transitions to 45 and 38 kK.^{21,23} Similar effects are anticipated for pyridyl,¹⁴ furyl²⁴ and thienyl substituted β -diketonates since they possess basic π systems. The bands at about 45 and 30-38 kK may therefore be assigned to π_3 - π_5^* and π_3 - π_4^* respectively where the band at 30-37 kK arises from the primary bands of aromatic and hetero-aromatic systems while the band at about 36-38 kK which is observed only when the β -diketone contains either aromatic or heteroaromic substituents has been assigned to a π - π * secondary transition of the aromatic ring.^{24,25} The bands at 24–28 kK are assigned to d- π or π -d metal-ligand or ligand-metal charge-transfer bands.²⁶ It is generally observed that aromatic substitution tends to lower frequencies of the UV bands while fluorination increases them.

ACKNOWLEDGEMENTS

We are very grateful to Dr. L.F. Larkworthy and Dr. A. Earnshaw for allowing the use of their research laboratories, and the University of Ibadan for the award of a Senate Research grant.

REFERENCES

- J. Selbin, Coord. Chem. Revs., 1, 293 (1966).
- J.P. Fackler, Jr., Prog. Inorg. Chem., 7, 361 (1967). 2.
- J. Selbin, G. Maus and D.L. Johnson, J. Inorg. Nucl. Chem., 29, 1735 (1967). 3
- R.P. Dodge, D.H. Templeton and A. Zalkin, J. Chem. Phys., 35, 55 (1961). 4.
- K. Isobe, Y. Nakamura and S. Kawaguchi, J. Inorg. Nucl. Chem., 40, 607 (1978).
- H.J. Stoklosa and J.R. Wasson, J. Inorg. Nucl. Chem., 38, 677 (1976). 6.
- K.S. Patel, J. Inorg. Nucl. Chem., 43, 667 (1981). 7.
- B.B. Adeleke and K.S. Patel, J. Coord. Chem., 11, 201 (1982). 8.
- S. Pinchas, B.L. Silver and I. Laulicht, J. Chem. Phys., 46, 1506 (1967).
- 10. G.T. Behnke and K. Nakamoto, Inorg. Chem., 6, 433 (1967).
- 11. G.T. Behnke and K. Nakamoto, Inorg. Chem., 6, 440 (1967).
- H. Wennerstom and O. Wennerstrom, Acta Chem. Scand., 26, 2891 (1972). 12.
- 13. J. Selbin, L.H. Holmes, Jr., and S.P. McGlynn, J. Inorg. Nucl. Chem., 25, 1359 (1963).
- 14. K.S. Patel and J.A. Faniran, J. Inorg. Nucl. Chem., 39, 1143 (1977).
- C.J. Ballhausen and H.B. Gray, Inorg. Chem., 1, 111 (1962). 15.
- 16. H.A. Kuska and P. Yang, Inorg. Chem., 13, 1090 (1974).
- J. Selbin and L. Morpurgo, J. Inorg. Nucl. Chem., 27, 673 (1965). 17.
- 18. R.L. Farmer and F.L. Urbach, Inorg. Chem., 13, 587 (1974).
- K.S. Patel, G.A. Kolawole and A. Earnshaw, J. Inorg. Nucl. Chem, 43, 3107 (1981). P.A. Kilty and D. Nicholls, J. Chem. Soc. (A), 1175 (1966). 19
- 20.
- 21. D. Ogden and J. Selbin, J. Inorg. Nucl. Chem., 30, 1227 (1968).
- M. Mathew, A.J. Carty and G.J. Palenik, J. Am. Chem. Soc., 92, 3197 (1970). 22.
- 23. L. Wish and R.A. Bolomey, J. Am. Chem. Soc., 72, 4486 (1950).
- T. Sasaki, K. Kanematsu and G. Kinoshita, J. Org. Chem., 33, 680 (1968). 24.
- 25. P.R. Singh and R. Sahai, J. Indian Chem. Soc., 46, 945 (1969).
- 26. P.R. Singh and R. Sahai, Aust. J. Chem., 23, 269, (1970).